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Ensemble averaging of advection-dispersion equations describing transport of a passive scalar in incom-
pressible random velocity fields requires a closure approximation. Commonly used approaches, such as the
direct interaction approximation and large-eddy simulations as well as equivalent renormalization schemes,
employ so-called two-point �or one-loop� closures. These approaches have proven to be adequate for transport
in zero-mean �unbiased� time-dependent random velocity fields with increasing accuracy for decreasing tem-
poral coherence. In the opposite limit of steady velocity fields with finite bias, however, these schemes fail to
predict effective transport properties both quantitatively and qualitatively, leading to an obvious inconsistency
for transverse dispersion in two spatial dimensions. For this case, two-point closures predict that macroscopic
transverse dispersion increases as the square root of the disorder variance while it has been proven rigorously
that there is no disorder-induced contribution to macroscopic transverse dispersion for purely advective trans-
port. Furthermore, two-point closures significantly underestimate the disorder-induced contribution to longitu-
dinal dispersion. We derive a four-point closure for stochastically averaged transport equations that goes
beyond classical one-loop schemes and demonstrate that it is exact for transverse dispersion and correctly
predicts an increase of the longitudinal disorder-induced dispersion coefficient with the square of the variance
of the strong disorder. The predicted values of asymptotic longitudinal dispersion coefficients are consistent
with those obtained via Monte Carlo random walk simulations.
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I. INTRODUCTION

We study transport of a passive scalar in steady incom-
pressible Gaussian random flow fields with nonzero mean
velocity �bias�. Transport of passive scalars in flow fields
varying randomly in space has been investigated in the past
as a steady-state limit of turbulent transport �the so-called
frozen turbulence� �e.g., �2–6��, as an approximation for sol-
ute transport in random porous media �e.g., �7–12��, and as a
tool to analyze random walks in random environments �e.g.,
�7,13–16��.

Most analyses of Gaussian flow models �e.g.,
�2–4,14–17�� dealt with zero-mean �unbiased� velocity
fields, often stipulating that incorporation of the bias is
straightforward. In various applications, including transport
in porous media, the mean flow velocity is nonzero. Analyti-
cal and numerical analyses of such flows showed that the
addition of a bias is nontrivial and leads to a qualitatively
and quantitatively different transport behavior �e.g., �13��.
Gaussian random flow models with nonzero bias have been
used to study fundamental transport properties in two- and
three-dimensional heterogeneous porous media �e.g.,
�9–12,18–21��.

The combined effect of local diffusion, microdispersion,
and velocity fluctuations is to increase the spreading of a
passive scalar in a spatially random velocity field. An accu-
rate quantification of the impact of spatial fluctuations on the

dispersion of a passive scalar is of paramount importance for
characterization of transport in heterogeneous environments.
Disorder-induced macrodispersion coefficients can be orders
of magnitude larger than their local or microscale counter-
parts. The qualitative and quantitative understanding of
heterogeneity-induced contaminant spreading has been the
subject of extensive research in groundwater hydrology �e.g.,
�22,23��.

Asymptotic disorder-induced spreading can be character-
ized by macrodispersion coefficients. Within a stochastic
framework, these are often defined by the temporal rate of
change of the second centered moments of the ensemble av-
eraged �normalized� particle distribution c̄�x , t� �e.g.,
�24,25��,

Dij =
1

2

d

dt
�� dx xixjc̄�x,t� −� dx xic̄�x,t�� dx xjc̄�x,t��

− Dij
m, �1�

where Dij
m �i , j , =1 , . . . ,d� are the microdispersion coeffi-

cients in d spatial dimensions.
Analyses of transport in heterogeneous environments rou-

tinely employ perturbation expansions in the variance of ve-
locity fluctuations. Lowest-order perturbation expansions
predict a macroscopic disorder-induced contribution to the
long-time asymptotic values of the longitudinal �in the direc-
tion of the mean flow� dispersion coefficient, while the con-
tributions to the transverse dispersion coefficient scale with
the microdispersion coefficient, which means they vanish in
the limiting case of zero local dispersion. Higher-order per-
turbative closures have been used, e.g., �26–29�, to study the
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impact of higher-order terms. Specifically, higher-order cor-
rections to the transverse macrodispersion coefficient have
been derived in �26,27� by employing a Lagrangian frame-
work and neglecting local dispersion. As time t→�, these
contributions tend to 0, in agreement with the leading-order
approximations, nonperturbative numerical simulations
�21,30�, and a nonperturbative exact analysis �1� of transport
in two-dimensional incompressible random flow.

Perturbation approaches break down as disorder in-
creases, which occurs when transport takes place in strongly
heterogeneous porous media. Renormalization theory �e.g.,
�10,31–35��, multiscale homogenization methods �e.g.,
�35–38��, and self-consistent closures �e.g., �26,39–44�� are
some of the most often used alternatives �see also the review
�34� and the references therein�. Unlike perturbative closures
�e.g., �28,29,43��, these methods represent �partial� resum-
mation schemes of the perturbation series which take into
account certain classes of contributions at every approxima-
tion order �and thus an infinite number of higher-order
terms�, while other contributions are disregarded.

The direct interaction approximation �DIA�, which relies
on a two-point closure of the underlying transport problem
�e.g., �39,40��, is an example of self-consistent closures. The
exactly solvable problem of transport in unbiased shear flow
with fluctuating cross sweep is used in �43� to compare the
performance of the DIA with that of second-order perturba-
tion closures, their local counterparts, and renormalized La-
grangian approaches. While the DIA gives satisfying results
for the dispersion of a scalar in turbulent flow �e.g.,
�2,40,43,44��, it fails to adequately describe macrodispersion
in two-dimensional biased random flows. In fact, as pointed
out by Kraichnan and others �e.g., �2,44��, the DIA is exact
for a random velocity field that is � correlated in time. Here,
however, we deal with the opposite limit of frozen or
quenched disorder.

Classical renormalization group studies of turbulence �or
more appropriately, properties of randomly stirred fluids�
�e.g., �45–47�� employ schemes that are equivalent to the
two-point closures. They result in the so-called one-loop re-
summation schemes for the eddy diffusivity �in the context
of the present paper termed macrodispersion� resulting from
the DIA scheme �44�.

However, the DIA and equivalent two-point closure ap-
proximations fail to describe the correct behavior of the
transverse dispersion coefficient in two dimensions, and pre-
dict a macroscopic disorder-induced contribution that scales
with the square root of the disorder variance. Moreover, nu-
merical simulations �12,21,30� of transport in steady two-
and three-dimensional Gaussian random flow fields show
that the DIA underestimates the longitudinal macrodisper-
sion coefficients. In three dimensions, the DIA closure cap-
tures a macroscopic contribution to transverse dispersion but
significantly underestimates its value. We show that this sys-
temic failure stems from the omission of a certain class of
higher-order terms.

In this paper, we derive a four-point closure scheme that
takes these contributions into account and goes beyond the
two-point closures routinely employed in the literature. This
four-point closure is exact for the transverse dispersion coef-
ficient in two dimensions and is consistent with Monte Carlo

simulations for the longitudinal dispersion coefficient. The
developed closure overcomes the limitations of commonly
used two-point closure schemes, such as the DIA and one-
loop renormalization approaches.

II. BASICS

A. Transport model

The time evolution of a scalar field c�x , t� in a spatially
random flow field u�x� is described by

�c�x,t�
�t

+ u�x� · �c�x,t� − � · Dm � c�x,t� = 0, �2�

where Dm is the microdispersion tensor. The random flow
velocity u�x� is divergence-free, � ·u�x�=0. The initial dis-
tribution is given by c�x ,0�=��x�. Let G�x , t�x� , t��� denote
the Green’s function associated with Eq. �2�. Its initial dis-
tribution is given by

G�x,t��x�,t��� = ��x − x�� . �3�

The elementary properties of Green’s functions suggest that

G�x,t�x�,t��� 	 g�x,t − t��x��� �4�

and that the scalar field c�x , t� is given in terms of the
Green’s function by

c�x,t� = g�x,t�0�� . �5�

B. Stochastic model

We assume that the random flow field u�x� is statistically
homogeneous �stationary�, i.e., that its �functional� distribu-
tion P
u�x�� satisfies

P
u�x�� = P
u�x + L�� , �6�

where L is an arbitrary constant vector. Statistical homoge-
neity implies that the ensemble mean velocity u is indepen-
dent of the position x. We use Reynolds’ decomposition to
represent u as the sum of its �constant� mean u and random
zero-mean fluctuations u��x� about it,

u�x� = ūe1 + u��x� , �7�

where e1 is the unit vector of a coordinate system aligned
with the direction of mean flow. Furthermore, spatial homo-
geneity implies that two-point covariance functions of ui��x�
are given by

ui��x�uj��x�� 	 �2Cij�x − x�� , �8�

where �2 and Cij�x� are the �constant� variance and correla-
tion function, respectively.

Finally, the statistical homogeneity of u�x� implies �see
Appendix B� the equivalence between the ensemble mean
Green’s function g�x , t�x��� and the ensemble mean scalar
field c̄�x−x� , t�,

g�x,t�x��� = c̄�x − x�,t� . �9�

Thus, in the following we use the terms propagator and con-
centration for the Green’s function as well as for the scalar
field c�x , t�.
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Lengths are now rescaled according to xi= x̂il with l a
typical length scale; times are rescaled according to t= t̂�u
where �u= l / ū is a characteristic advection time scale. The
random flow field is nondimensionalized according to u�x�
= û�x�ū, its variance as �2= �̂2ū2, and the microdispersion

tensor as Dm= D̂m / �lū�. To simplify the notation, in the fol-
lowing we drop the carets that denote nondimensional quan-
tities.

Substituting Eq. �7� into Eq. �2� leads to an integral equa-
tion in the Fourier-Laplace space �Appendix A�

c̃��k,s� = c̃0
��k,s� + c̃0

��k,s��
k�

ik · ũ��k��c̃��k − k�,s� .

�10�

Here c̃0
��k ,s� is the Fourier-Laplace transform of the “bare”

propagator c0�x , t� that is given by

c̃0
��k,s� = �s − ik1 + k · Dmk�−1 �11�

and

�
k
¯ 	� dk

�2��d¯ . �12�

Following the standard procedure �e.g., �48��, the ensemble
average of Eqs. �10� and �11� can be written in the form of
the Dyson equation for the mean c̄�x , t�,

c̄̃��k,s� = �s − ik1 + k · Dmk − ��k,s��−1. �13�

The as yet unknown function ��k ,s� is analogous to the
self-energy in quantum theory �36�. In the present context,
��k ,s� is known as the generalized diffusivity �2,36�. The
physical meaning of ��k ,s� becomes apparent if one substi-
tutes the average concentration c̄̃��k ,s� in Eq. �13� into the
Laplace transform of the macrodispersion coefficients in Eq.
�1�,

Dij
� �s� = − s−1� �2��k,s�

�ki � kj
�

k=0
. �14�

To obtain an operational expression for ��k ,s�, we note that
in the long-time limit the dispersion coefficients Dij�t� reach
their �as yet unknown� asymptotic values Dij

a ,

Dij
a = lim

t→�
Dij�t� = lim

s→0
sDij

� �s� . �15�

For large distances and long times, or equivalently, small
wave numbers and frequencies, the generalized diffusivity
can be approximated by �e.g., �36,49��

��k,0� 
 − k · Dak . �16�

Thus, the average concentration �13� is asymptotically given
by

c̄̃��k,s� = �s − ik1 + k · Dmk + k · Dak�−1. �17�

Equation �13� yields a formal �nondimensional� effective
equation for the average concentration �e.g., �32,40,50,51��,

sc̃��k,s� − ik1c̃��k,s� + k · Dmkc̃��k,s� − ��k,s�c̃��k,s� = 1,

�18�

which is equivalent to the Dyson equation. Such a formal
effective equation can also be derived within the Zwanzig-
Mori projector formalism �35,43,52,53�. Since ��k ,s� de-
pends on the unknown mixed moments of the random fluc-
tuations of the flow field and the full propagator, these
equations are incomplete and require a closure approxima-
tion. In the next section, we briefly review well-known
second- and fourth-order perturbative closures. For strongly
heterogeneous random flows, however, such low-order per-
turbation closures are not sufficient �e.g., �32,50��.

C. Perturbation theory

To make the presentation more compact, we employ a
diagrammatic representation �e.g., �36,54�� of integral ex-
pressions; see also the recent textbook by Sadovskii �55�.
The full propagator c̃��k ,s� is represented by a horizontal
double line, the bare propagator c̃0

��k ,s� by a single horizonal
line, and the random perturbation u��k�� by a single vertical
line. The intersection of the horizontal and vertical lines de-
fines a vertex, which is associated with the factor i�k
−k�� / �2��d. The latter is contracted with u��k��. The wave
vectors k sum up from the right to the left to the value on the
left. Thus, the wave vectors are determined uniquely by the
one on the left. The inner wave vectors, i.e., the vectors
associated with u��k�, in a diagram are integrated over. Thus,
the integral Eq. �10� can be represented by

= +

�19�
Equation �19� can be iterated into a perturbation series in
terms of the velocity fluctuations. Truncating this series at
fourth order, we obtain

= + +

+ + + . . . �20�

If the random velocity field ũ��k� is Gaussian, all �2n�-point
correlation functions can be expressed in terms of the two-
point correlation

ũi��k�ũj��k�� = �2��d��k + k��C̃ij�k� , �21�

and all �2n−1�-point correlation functions vanish. Thus, the
ensemble average is performed diagrammatically by pair-
wise connection of vertices. The sum of the wave vectors at
a vertex, where wave vectors of outgoing lines are sub-
tracted, is zero. According to Wick’s theorem �e.g., �48��, all
possible combinations of pairs of vertices have to be
summed up at a given approximation order. The average over
a diagram with an odd number of vertices is zero. Two con-
nected vertices are associated with the correlation matrix

C̃�k�. This matrix is contracted with the wave vectors of the
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ingoing and outgoing horizontal lines and multiplied by a
factor −�2��−d. The inner wave vectors are integrated over.

In the diagrammatic notation, the fourth-order expansion
of c̄̃��k ,s� is obtained by averaging Eq. �20� which leads to

= + +

+ + + . . . �22�

and the Dyson equation �18� as

= +

�23�
Here the ensemble-averaged concentration is represented by
the bold line, and the circle denotes the generalized diffusiv-
ity ��k ,s�. Using the series expansion for the average con-
centration and relation �13�, one obtains a series expansion
for ��k ,s�. Up to sixth order it is given by

= + +

+ . . .+

+

+ +

+

+

+

�24�

The generalized diffusivity is the sum of all irreducible dia-
grams, i.e., the diagrams that cannot be decomposed in two
by cutting a single internal line �e.g., �36��.

Substituting Eq. �24� into Eq. �14�, we obtain an expres-
sion for the macrodispersion coefficients,

Dij�t� = Dij
m + �

n=1

�

��n�Dij�t� , �25�

where ��n�Dij�t� are defined in terms of the diagrams contrib-
uting to the generalized diffusivity at every approximation
order. Under some conditions, such infinite series can be
computed analytically, as was done in �56� for transport in
one-dimensional random environments. Under more general
conditions, these series have to truncated or approximated by
partial summations obtained through closure schemes. In the
following, we briefly review the second- and fourth-order
perturbation approximations of the macrodispersion coeffi-
cients.

1. Second-order approximation

The second-order approximations of the longitudinal,
D11�t�, and transverse, D22�t�, macrodispersion coefficients
are given by the one-loop diagram in Eq. �24� �e.g.,
�24,25,57��,

��2�Dij�t� = �
0

t

dt��
k�

c̃0�− k�,t��C̃ij�k�� , �26�

where i=1, . . . ,d. The off-diagonal dispersion coefficients
are zero for symmetry reasons. For a short-range correlation

function, one obtains in d=2 dimensions in the limit of Dm

→0,

��2�D11
a � �2, ��2�D22

a = 0, t → � . �27�

Note that, as pointed out by many authors �e.g., �24,25,57��,
the second-order approximation yields no macroscopic con-
tribution to the transverse dispersion coefficient.

2. Fourth-order approximation

The fourth-order contribution to the macrodispersion co-
efficient is given by the loop and cross diagrams in Eq. �24�
�e.g., �26,27��,

��4�Dij�t� = ��4,l�Dij�t� + ��4,c�Dij�t� , �28a�

where the superscripts �l� and �c� denote the double-loop and
cross contributions, respectively. These are given by

��4,l�Dij�t� = − �4�
k�
�

k�
c̃0

��− k�,s�c̃��− k� − k�,s�

	c̃0
��− k�,s�C̃ij�k��k� · C̃�k��k� �28b�

and

��4,c�Dij�t� = − �4�
k�
�

k�
c̃0

��− k�,s�c̃��− k� − k�,s�

	c̃0
��− k�,s�C̃il�k��kl�km� C̃mj�k�� , �28c�

where the summation is carried out over repeated indices. In
two spatial dimensions, taking the limit of Eq. �28� as Dm

→0 yields

��4�D11
a � �4, ��4�D22

a = 0, t → � . �29�

The transverse dispersion coefficient is zero in fourth order
because the loop and cross diagrams cancel each other.
Clearly, this mechanism is not represented in a one-loop self-
consistent resummation scheme as detailed in the following.

III. SOME EXACT RELATIONS

The stationarity of the random flow field implies that the
ensemble average of Eq. �10� can be written as �see Appen-
dix C�

c̃��k,s� = c̃0
��k,s� + c̃0

��k,s�2k · ��k,s�k , �30a�

where

��k,s� = − �
k�
�

k�
ũ��k�� � ũ��k��c̃��k − k�,s� �30b�

and � denotes the tensor product. Comparison of Eq. �13�
and �30� yields

��k,s� = k · ���k,s� −
c̃0

��k,s���k,s�k � k��k,s�
1 + c̃0

��k,s�k · ��k,s�k �k ,

�31�

which demonstrates without any recourse to perturbation
theory that ��k ,s�=k ·��k ,s�k, with ��k ,s� given by the
expression in large parentheses in Eq. �31�.
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Substituting Eq. �31� into Eq. �14� gives for the macrodis-
persion coefficient

Dij
� �s� = − s−1
ij�0,s� . �32�

The asymptotic long-time behavior �s→0� of the macrodis-
persion coefficients is given by

Dij
a = − 
ij�0,0� . �33�

Taking the inverse Laplace transform of Eq. �30b� and �32�
leads to

Dij�t� = Dij
m + �

0

t

d��
k�
�

k�
ũi��k��ũj��k��c̃�− k�,t�� .

�34�

Substituting the Green’s function g̃�q , t�k�� into Eq. �34�
yields

Dij�t� = Dij
m + �

0

t

dt��
q
�

k�
ũi��k���̃ j�q,t�� , �35a�

where �̃ j�k , t� is the Fourier transform of the auxiliary func-
tion �e.g., �35,58��

� j�x,t� =� dx�uj��x��c�x,t�x��� . �35b�

This function is defined as a solution of the advection-
dispersion equation �2� subject to the initial condition

� j�x,t = 0� = uj��x� . �36�

Representations of the macrodispersion coefficient Dij�t� in
terms of the auxiliary function �̃ j�x , t� similar to Eq. �35�
were derived and analyzed previously with homogenization
approaches �e.g., �1,34,35,38,58–61��. For the asymptotic
�t→�� macrodispersion coefficients, we obtain

Dij
a = Dij

m + �
q
�

k�
ũi��k���̃ j

��q,0� . �37�

In d=2 spatial dimensions and for vanishing microdispersion
�Dm→0�, the exact solution for �̃2

��q ,0� is �1�

�̃2
��q,0� =

ũ2��q�
ik1

, �38�

as can be checked by inspection. Substituting Eq. �38� into
Eq. �37� with i=2 yields an exact expression for the trans-
verse dispersion coefficient, which is identical to the long-
time limit of the second-order perturbation theory expression
�26�. Thus, we obtain as an exact result that there is no mac-
roscopic contribution to transverse dispersion. This has been
proved in �1� in the framework of a homogenization theory
approach.

IV. CLOSURES, SELF-CONSISTENCY, AND
RESUMMATION

For transport in strongly heterogeneous flow fields, low-
order perturbation approaches are not sufficient. Here we re-

view the direct interaction approximation as a self-consistent
one-loop resummation scheme and discuss its failure in d
=2 dimensions. Then we develop a higher-order closure
scheme that overcomes the inconsistency inherent in the
DIA.

The transport problem is closed in terms of the function
��k ,s� defined by Eq. �30b�. An expansion for ��k ,s� is
obtained by inserting Eq. �22� into Eq. �30b�. This yields up
to fourth order,

= + . . .+ + +

�39�
where the rectangle denotes k ·��k ,s�k. Expanding �31� in
terms of ��k ,s� in �39� yields a closure for the generalized
diffusivity ��k ,s�,

= − + − . . .

�40�
The self-consistency condition is imposed by the fact that
only irreducible diagrams can contribute to the generalized
diffusivity. In the following we briefly summarize the deri-
vation of the DIA and elucidate its meaning as a resumma-
tion scheme of the perturbation series in order to contrast it
with a different four-point closure.

A. Direct interaction approximation

The DIA �e.g., �49,50�� is obtained by breaking the aver-
age in �30b� so that ��k ,s� reads as

k��k,s�k � − �2�
k�

kC̃�k��kc̃��k − k�,s��. .

�41�
It is obtained diagrammatically by replacing the single line in
the second-order loop diagram in �39� by a bold line and
disregarding the other diagrams. Note that this one-loop clo-
sure approximation renders ��k ,s� irreducible, i.e., consist-
ing only of irreducible diagrams. According to �40�, the gen-
eralized diffusivity is now consistently given by

= �42�

The self-consistency condition requires that only the first
term on the right of �40� contributes to the generalized dif-
fusivity as the remaining terms are reducible in the DIA clo-
sure approximation.

The DIA constitutes a one-loop closure, which is some-
times referred to as Corrsin’s conjecture �e.g., �26,33,49��. It
is equivalent to the Hartree-Fock approximation �e.g., �62��.
In the context of perturbation approximations to the solution
of the Kadar-Parisi-Zhang equation, this closure is called
fastest apparent convergency �63�. For transport in random
media, the scheme is called Gaussian closure �e.g., �15��.
Mazzino �44� presents the renormalized perturbation theory
leading to the DIA and the resulting two-point closure for the
macrodispersion coefficients. Classical renormalization
group studies analyzing the properties of randomly stirred
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fluids routinely employ such one-loop resummation schemes
�e.g., �45–47��.

The resulting effective transport equation for the Fourier
Laplace transform of the Green’s function is obtained by
inserting Eq. �42� for the generalized diffusivity into Eq.
�18�,

sc̃��k,s� − ik1c̃��k,s� + k · Dmkc̃��k,s�

+ �2�
k�

k · C̃�k��kc̃��k − k�,s�c̃��k,s� . �43�

The latter was first derived by Roberts �40�. The diagram-
matic representation of the corresponding integral equation is
given by

= +
�44�

The DIA is a resummation scheme for the generalized diffu-
sivity ��k ,s�. The class of diagrams that are summed up can
be determined by iterating the �nonlinear� integral Eq. �44�
and substituting the result into the self-consistent closure
�42�. Up to sixth order, this procedure leads to

= + + + . . .+

�45�
The scheme sums up the loop diagrams at any order, but
disregards all cross diagrams. By construction, there is no
double counting of diagrams. Recall that the cancellation of
the cross and loop diagrams yields a zero transverse disper-
sion coefficient in d=2 dimensions. Thus, as we see in the
following, the DIA leads to erroneous predictions in d=2.

According to Eq. �33�, the asymptotic behavior of the
macrodispersion coefficients predicted with the DIA closure
is

Dij
a = �2�

k�
C̃ij�k��c̃��− k�,0� . �46�

Combining Eq. �46� and �17� yields a well-known nonlinear
system of equations for the macrodispersion coefficients
�e.g., �26,41,42��,

Dij
a = �2�

k�

C̃ij�k��
ik1� + k� · �Dm + Da�k�

. �47�

To solve Eq. �47� for arbitrary �2, we reduce the
d-dimensional integrals to one-dimensional integrals analyti-
cally and solve the resulting equations numerically by em-
ploying the Newton method and evaluating the integrals with
Gaussian quadratures. For the sake of simplicity, here and in
the following, we employ the d-dimensional Kraichnan cor-
relation model �2� with correlation length l,

C̃ij�x� = ��ij −
kikj

k2 ��2��d/2k2 exp�−
k2

2
�exp�− ik · x� .

�48�

Figure 1 shows the corresponding solutions for the
asymptotic longitudinal and transverse macrodispersion co-
efficients. For �2�1, it follows from Eq. �47� that

D11
a � �2, Dii

a � �4, i � 1, �49�

i.e., the longitudinal coefficient is of order �2 and the trans-
verse coefficients are of order �4. The former is consistent
with the perturbation theory, while the latter is not. For large
�2
1, a scaling argument �e.g., �42�� shows that the macro-
dispersion coefficient in Eq. �47� scales as

Dii
a � �, ∀ i . �50�

Thus, Corrsin’s conjecture is not consistent with the exact
solution �see �1� and Sec. III�, according to which D22

a =0 in
d=2 dimensions.

B. Four-point closure

To overcome the apparent inconsistency of Corrsin’s con-
jecture, we develop a resummation scheme that takes into
account cross diagrams and is exact for the transverse dis-
persion coefficient in d=2 spatial dimensions. Using the sta-
tistical homogeneity of the random flow field u��x�, we show
in Appendix C that ��k ,s� in Eq. �30b� can be expressed as
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FIG. 1. Longitudinal and transverse asymptotic dispersion coef-
ficients given by the two-point closure. The dashed line shows the
second-order perturbation solution �27� for the longitudinal disper-
sion coefficient.
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��k,s� = ��2��k,s� + �
i=1

4 �
k�i�

c̃0
��k + k�1�,s�c̃0

��k − k�4�,s�

	c̃��k − k�3� − k�4�,s�ũ��k�1�� � ũ��k�4���k + k�1�� · ũ��k�2���k − k�4�� · ũ��k�3�� , �51a�

where

��2��k,s� = − �2�
k�

C̃�k��c̃0
��k − k�,s��

�51b�
As in the DIA, we break the average after the full propa-

gator and evaluate the average over the random velocity field
according to Wick’s theorem, which yields

= ++ +

�52�
Diagrammatically this closure is performed by replacing the
single lines in the center of the fourth-order diagrams in �39�
with the bold lines, and disregarding the remaining higher-
order diagrams.

Substituting �52� into �40� and retaining only the irreduc-
ible terms leads to a self-consistent expression for the gen-
eralized diffusivity ��k ,s�,

= + +

�53�
Again here the self-consistency condition is imposed by the
fact that the generalized diffusivity consists exclusively of
irreducible contributions. The scheme is by construction ex-
act up to fourth order. It also reproduces the exact result for
the transverse dispersion in d=2 dimensions.

The corresponding �nonlinear� effective transport equa-
tion for the average propagator is now given by

= +

+

+

�54�

The class of diagrams accounted for by the four-point clo-
sure can be determined by iterating �54� and substituting the
resulting series into the self-consistent expression �53�. Thus,
we obtain for the generalized diffusivity ��k ,s� up to sixth
order

= + +

+

+

+ . . . �55�

It is important to recognize the differences between the four-
point closure �55� and the DIA closure �42�. The four-point
closure sums up systematically the cross and loop contribu-
tions of higher order, as illustrated in �55�. It disregards the
loop diagrams similar to the fourth diagram on the right-hand
side of �42�, which are accounted for by the DIA, but takes
into account the cross diagrams similar to the fifth diagram
in �55�. Again as in the DIA, by construction there is no
double counting of diagrams.

Substituting �53� into �14� and taking the limit as s→0
leads to an expression for the asymptotic dispersion coeffi-
cients,

Dij
a = ��2�Dij

a + ��l�Dij
a + ��c�Dij

a , �56a�

where ��2�Dij
a is the long-time limit of �26�, and ��l�Dij

a and
��c�Dij

a correspond to the loop and cross diagrams in �53�,

��l�Dij
a = − �4�

k�
�

k�
c̃0

��− k�,0�2C̃ij�k��km� C̃ml�k��

	kl�c̃
��− k� − k�,0� , �56b�

��c�Dij
a = − �4�

k�
�

k�
c̃0

��− k�,0�c̃0
��− k�,0�C̃il�k��

	kl�km� C̃mj�k��c̃��− k� − k�,0� . �56c�

Relations Eq. �55�, along with Eq. �17� for the average con-
centration, constitute a nonlinear system of equations for the
asymptotic macrodispersion coefficients.

1. Analytical solutions in two dimensions

In d=2 dimensions, the asymptotic limit of Dm�1 leads
to the cancellation of the contributions to the transverse dis-
persion coefficient due to the loop and cross diagrams in Eq.
�53�, i.e.,

lim
Dm→0

���l�Dij
a + ��c�Dij

a � = 0. �57�

Since the second-order contribution �0
�2�

22�0 ,s��=0 in this

limit, this gives

lim
Dm→0

D22
a 	 0. �58�

This result is consistent with the exact result for the trans-
verse dispersion coefficient, first derived in �1� �see also Sec.
III�, as it preserves the cancellation mechanism in accounting
for the loop and cross contributions.

We show in Appendix D that combining Eq. �56� with the
asymptotic average concentration Eq. �17� gives the follow-
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ing nonlinear equation for the asymptotic longitudinal mac-
rodispersion coefficient D11

a :

D11
a = �2�0 + �4A1�D11

a � + �4A2�D11
a � , �59a�

where �0 is given by

�0 = �
k�
�

0

�

d� C̃11�k��exp�− i�k1�� �59b�

and

A1�D11
a � = − �

k�
�

k�
�

0

�

d� ��
0

�

d�

	exp�− i�k1��k2�
2C̃11�k��C̃22�k��

	exp�− �D11
a �k1� + k1��

2 + i��k1� + k1��� ,

�59c�

A2�D11
a � = 3�

k�
�

k�
�

0

�

d� C̃11�k��C̃11�k��

	exp�− �D11
a �k1� + k1��

2 + i��k1� + k1��� .

�59d�

For arbitrary variances �2, the longitudinal macrodispersion
coefficient D11

a is obtained by solving the self-consistent
equation �59� numerically, as outlined in Appendix D. For
�2
1, the asymptotic behavior of D11

a was determined ana-
lytically by noting that in the limit of large D11

a 
1, both A1
and A2 behave as

Ai�D11
a � = �i + O� 1

D11
a �, i = 1,2, �60a�

and

�0 =��

2
, �1 = �2 = 3�� . �60b�

Substituting Eq. �60� into Eq. �59�, we obtain a new approxi-
mation for the longitudinal macrodispersion coefficient,

D11
a = �0�2 + 2�1�4. �61�

Recently, de Dreuzy et al. �30� reported such a dependence
of the macroscopic asymptotic longitudinal dispersion coef-
ficient, which they obtained from numerical random walk
simulations in two-dimensional heterogeneous porous media.
They also confirmed the lack of a disorder-induced contribu-
tion to lateral dispersion in the limit of small microdisper-
sion.

2. Comparison to numerical simulations

Figure 2 compares the asymptotic longitudinal macrodis-
persion coefficients D11

a obtained from the four-point and
two-point closure schemes, fourth-order perturbation theory,
and the results obtained from numerical random walk simu-
lations of transport in the Gaussian random flow field char-
acterized by the correlation function �48�. The numerical
simulations are described in Appendix E. It should be noted

that two-dimensional Gaussian random flow fields display
closed streamlines as discussed, e.g., in �3,8,12�. As such, the
limit of zero microdispersion leads to an anomalous increase
of the longitudinal macrodispersion coefficient with time,
D11�t�� t, due to the trapping of particles in the closed
streamlines and particle transport on open streamlines. How-
ever, in the presence of microdispersion, D11�t� converges to
a constant asymptotic value D11

a as t becomes large. Since the
time required to reach this asymptote increases with the vari-
ance �2, we determine D11

a only for a maximum variance of
�2=1 due to limitations of computational resources. The pre-
sented results correspond to the local dispersion coefficients
of D11

m 	D22
m =10−3; the correlation length l and mean flow

velocity ū are set to 1.
The numerical results presented in Fig. 2 conform with

the fourth-order perturbation theory and the two- and four-
point closures, as long as the variance remains small, �2

�10−1. This is to be expected since the system is perturba-
tive for such small values, and all three schemes reduce to
the second-order perturbation theory result �27�.

For larger variances, the two-point closure significantly
underestimates the numerical results. The macrodispersion
coefficients given by the fourth-order perturbation theory un-
derestimate the numerical findings but are more accurate
than the two-point closure. Again, this should come as no
surprise, since the cross terms that are disregarded by the
two-point closure are taken into account. The four-point clo-
sure scheme underestimates the numerical results as well for
�2� �10−1 ,1�, but performs better than perturbation theory
and the two-point closure.

As �2 increases, the four-point closure yields macrodis-
persion values that are consistently larger than those obtained
from the fourth-order perturbation theory and the two-point
closure. The two-point closure yields macrodispersion values
that are much smaller than those obtained from both alterna-
tive schemes.

Though somewhat limited because of the pathology of
closed streamlines in two dimensions, this comparison shows
that the cross-terms, which are disregarded in the two-point
closure, need to be taken into account for a realistic quanti-
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FIG. 2. Comparison of the longitudinal asymptotic dispersion
coefficients as obtained from the DIA, the four-point closure
scheme �FPC�, fourth-order perturbation theory �FPT�, and the nu-
merical experiments �+�.
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tative prediction of macrodispersion in incompressible static
random flow fields. Furthermore, as pointed out above, the
recent paper by de Dreuzy et al. �30� confirms the behavior
obtained from the four-point closure scheme and demon-
strates the failures and limitations of the DIA in predicting
transport in strongly heterogeneous porous media.

V. SUMMARY AND CONCLUSIONS

We study transport in a static incompressible random flow
field. Focusing on the impact of spatial fluctuations on the
asymptotic macroscopic spreading of a passive scalar, we
investigated the behavior of the macrodispersion coefficients
�1�. The latter has been the subject of intense research in the
last three decades in the context of transport in random me-
dia and in particular for the quantification of contaminant
spreading in heterogeneous aquifers. Mostly limited to per-
turbation theory analyses, many studies are strictly valid only
for small or moderate fluctuations of the random flow field.

Most resummation schemes based on renormalization
theory and self-consistent closures that are employed to over-
come these limitations use so-called two-point closures �re-
sulting in one-loop resummation schemes for the macrodis-
persion coefficients�. These schemes are based on second-
order expressions �in the fluctuations of the random velocity
field�. While such approaches perform very well for random
velocities that are � correlated in time, they are insufficient in
the opposite limit of steady velocity fields. Specifically, they
prove to be inconsistent for the quantification of transverse
spreading in two spatial dimensions. We point out that this
inconsistency is due to the fact that classical two-point
schemes do not take into account a certain class of contribu-
tions �so-called cross contributions� to the perturbation se-
ries, which arise only in fourth order. To overcome this short-
coming, we derive a four-point closure for the ensemble
average concentration of a solute, which yields the macro-
dispersion coefficients accounting for these critical contribu-
tions.

Classical field theory yields an exact though formal mac-
roscopic evolution equation for the ensemble-averaged con-
centration distribution in terms of the generalized diffusivity
�self-energy� ��k ,s� that encapsulates the impact of spatial
heterogeneity on the macroscopic transport behavior. Using
the translation invariance of the underlying random flow
field we obtain expression �31� for the generalized diffusiv-
ity, which forms the basis for the derivation of the four-point
closure and can be used straightforwardly to establish higher-
order closure schemes.

Going beyond the lowest-order perturbation theory, we
analyze the DIA scheme and similar two-point closure
schemes. The expressions for the macrodispersion coeffi-
cients resulting from these approaches take into account con-
tributions of all orders in the disorder variance but disregard
a class of so-called cross terms. These terms arise at fourth
order and thus are beyond the reach of classical one-loop
schemes �which are based on second order�. However, it is
precisely this class of terms that plays a critical role for the
quantification of transverse spreading in two spatial dimen-
sions.

We derive and implement a four-point closure, which is
exact for transverse dispersion in two dimensions. The re-
sulting resummation scheme is evaluated for the macrodis-
persion coefficients in two spatial dimensions. It yields zero
transverse dispersion, while the longitudinal macrodispersion
coefficients increases monotonically with disorder variance.
For strong fluctuations of the random flow field, the longitu-
dinal macrodispersion coefficient increases as the square of
the disorder variance as given by expression �61�. These re-
sults are consistent with recently published Monte Carlo
simulations �30� and the simulations presented in the paper.
The DIA, in contrast, predicts an increase of the longitudinal
and transverse macrodispersion coefficients with the square
root of the disorder variance. A comparison of the four-point
closure, fourth-order perturbation theory, and the DIA shows
that the latter performs worst of the three closure schemes
under consideration. The two-point DIA scheme is insuffi-
cient for the quantification of asymptotic solute spreading in
biased incompressible random flow fields. Higher-order clo-
sure schemes, such as the one suggested in the present paper,
are required to make reliable predictions for the disorder-
induced spreading in random environments.
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APPENDIX A: FOURIER AND LAPLACE TRANSFORM

Let us define Fourier �denoted by the tilde� and Laplace
�denoted by the asterisk� forward and inverse transform pairs
as

c̃�k,t� =� dx eik·xc�x,t�, c�x,t� = �
k

e−ik·xc̃�k,t�

�A1�

and

c̃��k,s� = �
0

�

dt e−stc̃�k,t�, c̃�k,t� = �
�−i�

�+i�

ds estc̃��k,s� ,

�A2�

respectively. In the definition of the inverse Laplace trans-
form �A2�, � is chosen so that singularities of g̃��s� lie to the
left of the line ��− i� ,�+ i�� �64�.

APPENDIX B: GREEN’S FUNCTION

We focus here on the properties of the Green’s function as
a consequence of the statistical homogeneity of the random
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field u�x�. Let us define the Green’s function gL�x , t�x��� as a
solution of

�gL�x,t�x���
�t

+ � · �uL�x� − Dm��gL�x,t�x��� = 0, �B1�

uL�x� 	 u�x + L�

subject to the initial condition gL�x ,0�x���=��x−x��. One
can verify by inspection that this solution is given by

gL�x,t�x��� = g�x + L,t�x� + L�� , �B2�

Due to the statistical homogeneity of u�x�, the ensemble
means of gL�x , t�x��� and g�x , t�x��� are identical. It then fol-
lows from Eq. �B2� that for an arbitrary L

ḡ�x,t�x��� = ḡ�x + L,t�x� + L�� . �B3�

Setting L=−x� in Eq. �B3� yields ḡ�x , t�x���= ḡ�x−x� , t�0��.
Recalling Eq. �5�, we obtain Eq. �9�.

The stationarity of the random flow field also implies that
functionals of g�x , t�x��� and u�x� are translation invariant,

F�
g�x,t�x����,
u��x���

= F�
gL�x,t�x����,
uL��x���

= F�
�g�x + L�,t�x�� + L��,
u��x + L��� , �B4�

where we used Eq. �B2�. Thus, we obtain for the three-point
cross moments

ui��x��g�x�,t�y�� = �i
�3��x� − x�,x� − y,t� , �B5�

which in Fourier space reads as

ũi�k��g̃�k�,t�q�� = �2��d�̃i
�3��k�,q,t���k� + k� + q� .

�B6�

For the four-point cross moments, we obtain accordingly

ui��x��uj��x��g�x�,t�y�� = �ij
�4��x� − x�,x� − x�,x� − y,t� ,

�B7�

for which we obtain in Fourier space

ũi�k��ũj�k��g̃�k�,t�q�� = �2��d�̃ij
�4��k�,k� + k�,q,t�

	��k� + k� + k� + q� . �B8�

APPENDIX C: ENSEMBLE AVERAGES

Relation �5� between the scalar field and the Green’s func-
tion reads in Fourier-Laplace space as

c̃��k,s� = �
q

g̃��k,s�q�� . �C1�

Using the translation invariance of the average Green’s func-
tion as derived in the previous section, we obtain for c̃��k ,s�
in Fourier-Laplace space

c̃��k,s� = �
q

g̃��k,s�q�� = �
q

g̃��− q,s�− k�� , �C2�

where g̃��q ,s�k�� is the adjoint Green’s function. The integral
equation for the adjoint Green’s function reads as

g̃��q,s�k�� = �2��d��k + q�c̃0
��− k,s� − c̃0

��− k,s�

	�
k�

ik · ũ��k��g̃��q,s�k − k��� . �C3�

In order to derive Eq. �30a� with Eq. �30b�, we use �C3� in
�C2�, which yields

c̃��k,s� = c̃0
��k,s�

+ c̃0
��k,s��

k�
�

q
ik · ũ��k��g̃��− q,s�− k − k��� .

�C4�

From Eq. �B6�, we conclude that

ũi��k��g̃��− q,s�− k − k��� = ũi��k��g̃��k,s�q − k��� ,

�C5�

so that Eq. �C4� can be written as

c̃��k,s� = c̃0
��k,s� + c̃0

��k,s��
k�
�

q
ik · ũ��k��g̃��k,s�q�� ,

�C6�

where we shifted q→q+k�. Using Eq. �C1� gives

c̃��k,s� = c̃0
��k,s� + c̃0

��k,s��
k�

ik · ũ��k��c̃��k,s� . �C7�

Substituting the right side of Eq. �10� into the right side of
Eq. �C7� gives Eq. �30a� with �30b�.

For the derivation of Eq. �51�, we iterate the integral
equation Eq. �C3� once and insert the right side of the result-
ing equation into the right side of Eq. �C2�. This yields

c̃��k,s� = c̃0
��k,s� − c̃0

��k,s��
k�
�

k�
�

q
c̃0

��k + k�,s�

	k · ũ��k���k + k�� · ũ��k��g̃��− q,s�− k − k� − k��� .

�C8�

With the same arguments as above, we obtain by using rela-
tion Eq. �B8�

c̃��k,s� = c̃0
��k,s� − c̃0

��k,s��
k�
�

k�
c̃0

��k + k�,s�

	k · ũ��k���k + k�� · ũ��k��c̃��k,s� . �C9�

Iterating �10� once and substituting the right side of the re-
sulting integral equation into �C9� gives �30� with �51�.

APPENDIX D: INTEGRALS

Inserting Eq. �17� and �11� into Eq. �56b� and �56c� for
Dm=0, we obtain
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�D11
�c� = 2�4�

k�
�

k�
�

0

�

d� C̃11�k��C̃11�k��exp
− ��i�k1� + k1��

+ D11
a �k1� + k1��

2�� , �D1�

�D11
�l� =

1

2
�D11

�c� − �4�
k�
�

k�
�

0

�

d� ��
0

�

d�

	exp�− i�k1��C̃11�k��k2�
2C̃22�k��exp
− ��i�k1� + k1��

+ D11
a �k1� + k1��

2�� . �D2�

A1�D11
a � is defined by A1�D11

a �=�D11
�l�−1 /2�D11

�c� and
A2�D11

a �=3 /2�D11
�c�.

Inserting Eq. �48� into Eq. �D1� and �D2�, we obtain for
A1�D11

a � and A2�D11
a �

A1�D11
a � = 3�

0

�

d��
0

�

d� �

	exp�−
2�2 + 2�2D11

a � + 2�� + �2

2�1 + 4D11
a ��

�
	

�2 − 4��2D11
a + 4�2�2D11

a2 − 8�2D11
a2 − 6D11

a � − 1

�4D11
a � + 1�5/2 ,

�D3�

A2�D11
a � =

3��

2 �1 + exp� 1

4D11
a2�erfc� 1

D11
a �� . �D4�

The self-consistent equation �59� is solved using the Newton
method �e.g., �65��, the double integral in �D3� is solved
numerically using Gaussian quadratures. In the limit of D11

a


1, the above expressions can be solved analytically and
give �59�.

APPENDIX E: NUMERICAL SIMULATIONS

One realization of the random flow field u�x� is generated
as a superposition of randomly chosen harmonic modes �e.g.,
�2–4,12��,

ui�x� = ū�i1 + �ū� 2

N�
j=1

N

pi�k�j��cos�k�j� · x + ��j�� .

�E1�

The vectors k�j� and the phases ��j� are independent random
numbers. The wave vectors k�j� are drawn from a two-
dimensional Gaussian distribution with vanishing average
and variance 1 / l2. The phases ��j� are equally distributed in
the interval �0,2��. Here we used N=100 modes.

The Langevin equation that is associated with the Fokker-
Planck equation �2� is given by �e.g., �66��

d

dt
x�t� = u„x�t�… + ��t� , �E2�

where ��t� represents a two-dimensional Gaussian white
noise defined by ��i�t��=0 and ��i�t�� j�t���=2D�ij��t− t��.
The angular brackets denote the average over all white noise
realizations. The macrodispersion coefficients then are given
by

Dij�t� = 1/2
d

dt

�xi�t�xi�t�� − �xi�t���xi�t��� . �E3�

The Langevin equation �E2� is solved using the extended
Runge-Kutta method given in �4� instead of the common
Euler method which follows from a straightforward time dis-
cretization of Eq. �E2�. The accuracy of the extended Runge-
Kutta scheme used here for the calculation of the particle
path lines is of the order �t3/2, whereas the Euler method
provides an accuracy of order �t1/2 only. The simulations
were performed for 1000 realizations of the random flow
field u�x�, ten realizations of the white noise in each realiza-
tion of u�x� and a time discretization of �t=10−1.
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